Inestabilidad de Weibel - Weibel instability

La inestabilidad de Weibel es una inestabilidad del plasma presente en plasmas electromagnéticos homogéneos o casi homogéneos que poseen una anisotropía en el espacio de momento (velocidad). Esta anisotropía se entiende generalmente como dos temperaturas en diferentes direcciones. Burton Fried demostró que esta inestabilidad puede entenderse más simplemente como la superposición de muchos haces de contracorriente. En este sentido, es como la inestabilidad de dos corrientes excepto que las perturbaciones son electromagnéticas y dan como resultado una filamentación en contraposición a las perturbaciones electrostáticas que resultarían en un agrupamiento de cargas. En el límite lineal, la inestabilidad provoca un crecimiento exponencial de campos electromagnéticos en el plasma que ayudan a restaurar la isotropía del espacio de momento. En casos muy extremos, la inestabilidad de Weibel está relacionada con inestabilidades de corrientes unidimensionales o bidimensionales .

Considere un plasma de iones de electrones en el que los iones están fijos y los electrones están más calientes en la dirección y que en la dirección xo z.

Para ver cómo aumentaría la perturbación del campo magnético, suponga que un campo B = B cos kx surge espontáneamente del ruido. La fuerza de Lorentz luego dobla las trayectorias de los electrones con el resultado de que los electrones ev x B que se mueven hacia arriba se congregan en B y los que se mueven hacia abajo en A. La corriente resultante j = -en ve hojas genera un campo magnético que mejora el campo original y por lo tanto la perturbación crece.

La inestabilidad de Weibel también es común en los plasmas astrofísicos, como la formación de choques sin colisión en los remanentes de supernovas y las explosiones de rayos.

Un ejemplo simple de inestabilidad de Weibel

Como ejemplo simple de inestabilidad de Weibel, considere un haz de electrones con densidad y velocidad inicial que se propaga en un plasma de densidad con velocidad . El análisis a continuación mostrará cómo una perturbación electromagnética en forma de onda plana da lugar a una inestabilidad de Weibel en este simple sistema de plasma anisotrópico. Suponemos un plasma no relativista por simplicidad.

Suponemos que no hay un campo eléctrico o magnético de fondo, es decir . La perturbación se tomará como una onda electromagnética que se propaga a lo largo de ie . Suponga que el campo eléctrico tiene la forma

Con la supuesta dependencia espacial y temporal, podemos usar y . De la ley de Faraday, podemos obtener el campo magnético de perturbación

Considere el haz de electrones. Suponemos pequeñas perturbaciones, y así linealizamos la velocidad y la densidad . El objetivo es encontrar la densidad de corriente del haz de electrones de perturbación

donde se han descuidado términos de segundo orden. Para hacer eso, comenzamos con la ecuación del momento del fluido para el haz de electrones

que se puede simplificar notando eso y descuidando los términos de segundo orden. Con el supuesto de onda plana para las derivadas, la ecuación del momento se convierte en

Podemos descomponer las ecuaciones anteriores en componentes, prestando atención al producto cruzado en el extremo derecho y obtener los componentes distintos de cero de la perturbación de la velocidad del haz:

Para encontrar la densidad de perturbación , usamos la ecuación de continuidad del fluido para el haz de electrones

que puede simplificarse de nuevo notando eso y descuidando los términos de segundo orden. El resultado es

Usando estos resultados, podemos usar la ecuación para la densidad de corriente de perturbación del haz dada anteriormente para encontrar

Se pueden escribir expresiones análogas para la densidad de corriente de perturbación del plasma que se mueve hacia la izquierda. Al observar que el componente x de la densidad de corriente de perturbación es proporcional a , vemos que con nuestras suposiciones para las densidades y velocidades no perturbadas del haz y el plasma, el componente x de la densidad de corriente neta desaparecerá, mientras que los componentes z, que son proporcionales a , se sumarán. Por tanto, la perturbación de la densidad de corriente neta es

La relación de dispersión ahora se puede encontrar a partir de las ecuaciones de Maxwell:

¿Dónde está la velocidad de la luz en el espacio libre? Al definir la frecuencia de plasma efectiva , la ecuación anterior da como resultado

Esta ecuación bi-cuadrática se puede resolver fácilmente para dar la relación de dispersión

En la búsqueda de inestabilidades, buscamos ( se asume real). Por lo tanto, debemos tomar la relación / modo de dispersión correspondiente al signo menos en la ecuación anterior.

Para obtener más información sobre la inestabilidad, es útil aprovechar nuestro supuesto no relativista para simplificar el término de raíz cuadrada, señalando que

La relación de dispersión resultante es entonces mucho más simple

es puramente imaginario. Escritura

vemos que , de hecho, corresponde a una inestabilidad.

Los campos electromagnéticos tienen entonces la forma

Por lo tanto, los campos eléctricos y magnéticos están desfasados, y al notar que

de modo que vemos que se trata de una perturbación principalmente magnética, aunque hay una perturbación eléctrica distinta de cero. El crecimiento del campo magnético da como resultado la estructura de filamentación característica de la inestabilidad de Weibel. La saturación ocurrirá cuando la tasa de crecimiento sea ​​del orden de la frecuencia del ciclotrón de electrones

Referencias

  • Weibel, Erich S. (1 de febrero de 1959). "Ondas transversales de crecimiento espontáneo en un plasma debido a una distribución de velocidad anisotrópica". Cartas de revisión física . Sociedad Estadounidense de Física (APS). 2 (3): 83–84. doi : 10.1103 / physrevlett.2.83 . ISSN  0031-9007 .
  • Fried, Burton D. (1959). "Mecanismo de inestabilidad de ondas plasmáticas transversales". Física de fluidos . Publicaciones AIP. 2 (3): 337. doi : 10.1063 / 1.1705933 . ISSN  0031-9171 .
  • Conferencia [1]

Ver también