Orden topológico - Topological order

En física , el orden topológico es una especie de orden en la fase de temperatura cero de la materia (también conocida como materia cuántica). Macroscópicamente, el orden topológico se define y describe mediante una degeneración robusta del estado fundamental y fases geométricas cuantificadas no abelianas de estados fundamentales degenerados. Microscópicamente, los órdenes topológicos corresponden a patrones de entrelazamiento cuántico de largo alcance . Los estados con diferentes órdenes topológicos (o diferentes patrones de entrelazamientos de largo alcance) no pueden transformarse entre sí sin una transición de fase.

Varios estados ordenados topológicamente tienen propiedades interesantes, tales como (1) degeneración topológica y estadísticas fraccionarias o estadísticas no abelianas que pueden usarse para realizar una computadora cuántica topológica; (2) estados de borde conductores perfectos que pueden tener aplicaciones importantes del dispositivo; (3) campo de calibre emergente y estadísticas de Fermi que sugieren un origen de información cuántica de partículas elementales; (4) entropía de entrelazamiento topológico que revela el origen de entrelazamiento del orden topológico, etc. El orden topológico es importante en el estudio de varios sistemas físicos como los líquidos de espín y el efecto Hall cuántico , junto con aplicaciones potenciales al cálculo cuántico tolerante a fallas .

Los aislantes topológicos y los superconductores topológicos (más allá de 1D) no tienen el orden topológico como se definió anteriormente, sus entrelazamientos son solo de corto alcance.

Fondo

Aunque toda la materia está formada por átomos , la materia puede tener diferentes propiedades y aparecer en diferentes formas, como sólida , líquida , superfluida , etc. Estas diversas formas de materia a menudo se denominan estados de materia o fases . Según la física de la materia condensada y el principio de emergencia , las diferentes propiedades de los materiales se originan en las diferentes formas en que los átomos se organizan en los materiales. Esas diferentes organizaciones de los átomos (u otras partículas) se denominan formalmente órdenes en los materiales.

Los átomos pueden organizarse de muchas formas que conducen a muchos órdenes diferentes y muchos tipos diferentes de materiales. La teoría de ruptura de simetría de Landau proporciona una comprensión general de estos diferentes órdenes. Señala que los diferentes órdenes realmente corresponden a diferentes simetrías en las organizaciones de los átomos constituyentes. A medida que un material cambia de un orden a otro (es decir, cuando el material experimenta una transición de fase ), lo que sucede es que cambia la simetría de la organización de los átomos.

Por ejemplo, los átomos tienen una distribución aleatoria en un líquido , por lo que un líquido permanece igual a medida que desplazamos los átomos una distancia arbitraria. Decimos que un líquido tiene una simetría de traslación continua . Después de una transición de fase, un líquido puede convertirse en un cristal . En un cristal, los átomos se organizan en una matriz regular (una red ). Una celosía permanece sin cambios solo cuando la desplazamos una distancia particular (un número entero multiplicado por una constante de celosía ), por lo que un cristal solo tiene una simetría de traslación discreta . La transición de fase entre un líquido y un cristal es una transición que reduce la simetría de traslación continua del líquido a la simetría discreta del cristal. Este cambio de simetría se llama ruptura de simetría . La esencia de la diferencia entre líquidos y cristales es, por tanto, que las organizaciones de los átomos tienen diferentes simetrías en las dos fases.

La teoría de la ruptura de la simetría de Landau ha sido una teoría muy exitosa. Durante mucho tiempo, los físicos creyeron que la teoría de Landau describía todos los posibles órdenes en los materiales y todas las posibles transiciones de fase (continuas).

Descubrimiento y caracterización

Sin embargo, desde finales de la década de 1980, se ha vuelto gradualmente evidente que la teoría de ruptura de simetría de Landau puede no describir todos los órdenes posibles. En un intento de explicar la superconductividad de alta temperatura de la quiral se introdujo estado de espín. Al principio, los físicos todavía querían usar la teoría de ruptura de simetría de Landau para describir el estado de giro quiral. Identificaron el estado de espín quiral como un estado que rompe la inversión de tiempo y las simetrías de paridad, pero no la simetría de rotación de espín. Este debería ser el final de la historia de acuerdo con la descripción de órdenes de ruptura de simetría de Landau. Sin embargo, rápidamente se dio cuenta de que hay muchos estados de espín quiral diferentes que tienen exactamente la misma simetría, por lo que la simetría por sí sola no era suficiente para caracterizar diferentes estados de espín quiral. Esto significa que los estados de espín quiral contienen un nuevo tipo de orden que va más allá de la descripción de simetría habitual. El nuevo tipo de orden propuesto se denominó "orden topológico". El nombre "orden topológico" está motivado por la teoría efectiva de baja energía de los estados de espín quiral, que es una teoría de campo cuántico topológico (TQFT). Nuevos números cuánticos, como la degeneración del estado fundamental (que se puede definir en un espacio cerrado o un espacio abierto con límites separados, incluidos los órdenes topológicos abelianos y los órdenes topológicos no abelianos) y la fase geométrica no abeliana de los estados fundamentales degenerados, se introdujeron para caracterizar y definir los diferentes órdenes topológicos en estados de espín quiral. Más recientemente, se demostró que los órdenes topológicos también se pueden caracterizar por la entropía topológica .

Pero los experimentos pronto indicaron que los estados de espín quiral no describen superconductores de alta temperatura, y la teoría del orden topológico se convirtió en una teoría sin realización experimental. Sin embargo, la similitud entre los estados de espín quiral y los estados cuánticos de Hall permite utilizar la teoría del orden topológico para describir diferentes estados cuánticos de Hall. Al igual que los estados de espín quiral, los diferentes estados cuánticos de Hall tienen la misma simetría y están fuera de la descripción de ruptura de simetría de Landau. Uno encuentra que los diferentes órdenes en diferentes estados cuánticos de Hall pueden de hecho ser descritos por órdenes topológicos, por lo que el orden topológico tiene realizaciones experimentales.

El estado de Hall cuántico fraccional (FQH) se descubrió en 1982 antes de la introducción del concepto de orden topológico en 1989. Pero el estado FQH no es el primer estado ordenado topológicamente descubierto experimentalmente. El superconductor , descubierto en 1911, es el primer estado ordenado topológicamente descubierto experimentalmente; tiene orden topológico Z 2 .

Aunque los estados ordenados topológicamente suelen aparecer en sistemas de fermiones / bosones que interactúan fuertemente, también puede aparecer un tipo simple de orden topológico en sistemas de fermiones libres. Este tipo de orden topológico corresponde al estado Hall cuántico integral, que se puede caracterizar por el número de Chern de la banda de energía llena si consideramos el estado Hall cuántico entero en una red. Los cálculos teóricos han propuesto que tales números de Chern pueden medirse experimentalmente para un sistema de fermiones libres. También es bien sabido que tal número de Chern se puede medir (quizás indirectamente) por estados de borde.

La caracterización más importante de los órdenes topológicos serían las excitaciones fraccionadas subyacentes (como los anones ) y sus estadísticas de fusión y de trenzado (que pueden ir más allá de las estadísticas cuánticas de bosones o fermiones ). Los trabajos de investigación actuales muestran que las excitaciones en forma de bucle y cadena existen para órdenes topológicos en el espaciotiempo dimensional 3 + 1, y sus estadísticas de trenzado de cadenas / bucles múltiples son las firmas cruciales para identificar órdenes topológicos dimensionales 3 + 1. Las estadísticas de múltiples bucles / trenzado de cuerdas de órdenes topológicos de 3 + 1 dimensiones pueden ser capturadas por los invariantes de enlace de la teoría de campos cuánticos topológicos particulares en 4 dimensiones del espacio-tiempo.

Mecanismo

Una gran clase de órdenes topológicos 2 + 1D se realiza a través de un mecanismo llamado condensación de red de cuerdas . Esta clase de órdenes topológicos puede tener un borde con huecos y se clasifican según la teoría de la categoría de fusión unitaria (o categoría monoidal ). Uno encuentra que la condensación de la red de cuerdas puede generar infinitos tipos diferentes de órdenes topológicos, lo que puede indicar que quedan muchos tipos nuevos de materiales por descubrir.

Los movimientos colectivos de cuerdas condensadas dan lugar a excitaciones por encima de los estados condensados ​​de red de cuerdas. Esas excitaciones resultan ser bosones gauge . Los extremos de las cuerdas son defectos que corresponden a otro tipo de excitaciones. Esas excitaciones son las cargas del indicador y pueden llevar estadísticas de Fermi o fraccionales .

Las condensaciones de otros objetos extendidos como " membranas ", "redes de brana" y fractales también conducen a fases ordenadas topológicamente y "vidriosidad cuántica".

Formulación matemática

Sabemos que la teoría de grupos es la base matemática de los órdenes que rompen la simetría. ¿Cuál es la base matemática del orden topológico? Se descubrió que una subclase de órdenes topológicos 2 + 1D (órdenes topológicas abelianas) puede clasificarse mediante un enfoque de matriz K. La condensación de la red de cuerdas sugiere que la categoría tensorial (como la categoría de fusión o la categoría monoidal ) es parte de la base matemática del orden topológico en 2 + 1D. Las investigaciones más recientes sugieren que (hasta órdenes topológicos invertibles que no tienen excitaciones fraccionadas):

  • Los órdenes topológicos bosónicos 2 + 1D se clasifican por categorías de tensor modular unitario.
  • Los órdenes topológicos bosónicos 2 + 1D con simetría G se clasifican por categorías de tensor cruzado G.
  • Los órdenes topológicos bosónicos / fermiónicos 2 + 1D con simetría G se clasifican por categorías de fusión trenzada unitaria sobre la categoría de fusión simétrica, que tiene extensiones modulares. La categoría de fusión simétrica Rep (G) para sistemas bosónicos y sRep (G) para sistemas fermiónicos.

El orden topológico en dimensiones superiores puede estar relacionado con la teoría de n categorías. El álgebra de operadores cuánticos es una herramienta matemática muy importante en el estudio de los órdenes topológicos.

Algunos también sugieren que el orden topológico se describe matemáticamente mediante una simetría cuántica extendida .

Aplicaciones

Los materiales descritos por la teoría de ruptura de simetría de Landau han tenido un impacto sustancial en la tecnología. Por ejemplo, los materiales ferromagnéticos que rompen la simetría de rotación de espín pueden usarse como medio de almacenamiento de información digital. Un disco duro hecho de materiales ferromagnéticos puede almacenar gigabytes de información. Los cristales líquidos que rompen la simetría rotacional de las moléculas encuentran una amplia aplicación en la tecnología de visualización. Los cristales que rompen la simetría de traslación conducen a bandas electrónicas bien definidas que a su vez nos permiten fabricar dispositivos semiconductores como los transistores . Los diferentes tipos de órdenes topológicos son incluso más ricos que los diferentes tipos de órdenes que rompen la simetría. Esto sugiere su potencial para aplicaciones interesantes y novedosas.

Una aplicación teorizada sería utilizar estados ordenados topológicamente como medio para la computación cuántica en una técnica conocida como computación cuántica topológica . Un estado ordenado topológicamente es un estado con un entrelazamiento cuántico no local complicado . La no localidad significa que el entrelazamiento cuántico en un estado ordenado topológicamente se distribuye entre muchas partículas diferentes. Como resultado, el patrón de entrelazamientos cuánticos no puede ser destruido por perturbaciones locales. Esto reduce significativamente el efecto de decoherencia . Esto sugiere que si usamos diferentes entrelazamientos cuánticos en un estado ordenado topológicamente para codificar información cuántica, la información puede durar mucho más. La información cuántica codificada por los entrelazamientos cuánticos topológicos también se puede manipular arrastrando los defectos topológicos entre sí. Este proceso puede proporcionar un aparato físico para realizar cálculos cuánticos . Por lo tanto, los estados ordenados topológicamente pueden proporcionar medios naturales tanto para la memoria cuántica como para la computación cuántica. Tales realizaciones de memoria cuántica y computación cuántica pueden potencialmente volverse tolerantes a fallas .

Los estados ordenados topológicamente en general tienen la propiedad especial de que contienen estados de frontera no triviales. En muchos casos, esos estados límite se convierten en un canal conductor perfecto que puede conducir electricidad sin generar calor. Esta puede ser otra aplicación potencial del orden topológico en dispositivos electrónicos.

De manera similar al orden topológico, los aisladores topológicos también tienen estados de frontera sin espacios. Los estados límite de los aislantes topológicos juegan un papel clave en la detección y aplicación de aisladores topológicos. Esta observación conduce naturalmente a una pregunta: ¿son los aisladores topológicos ejemplos de estados ordenados topológicamente? De hecho, los aisladores topológicos son diferentes de los estados ordenados topológicamente definidos en este artículo. Los aisladores topológicos solo tienen entrelazamientos de corto alcance y no tienen orden topológico, mientras que el orden topológico definido en este artículo es un patrón de entrelazamiento de largo alcance. El orden topológico es robusto frente a cualquier perturbación. Tiene teoría de gauge emergente, carga fraccional emergente y estadística fraccionaria. En contraste, los aisladores topológicos son robustos solo contra perturbaciones que respetan la inversión del tiempo y las simetrías U (1). Sus excitaciones de cuasi-partículas no tienen carga fraccionaria ni estadísticas fraccionarias. Estrictamente hablando, el aislante topológico es un ejemplo de orden topológico protegido por simetría (SPT) , donde el primer ejemplo de orden SPT es la fase Haldane de la cadena spin-1. Pero la fase Haldane de la cadena spin-2 no tiene orden SPT.

Impacto potencial

La teoría de la ruptura de la simetría de Landau es una piedra angular de la física de la materia condensada . Se utiliza para definir el territorio de la investigación de la materia condensada. La existencia de un orden topológico parece indicar que la naturaleza es mucho más rica de lo que ha indicado hasta ahora la teoría de la ruptura de la simetría de Landau . De modo que el orden topológico abre una nueva dirección en la física de la materia condensada: una nueva dirección de la materia cuántica altamente entrelazada. Nos damos cuenta de que las fases cuánticas de la materia (es decir, las fases de la materia a temperatura cero) se pueden dividir en dos clases: estados entrelazados de largo alcance y estados entrelazados de corto alcance. El orden topológico es la noción que describe los estados entrelazados de largo alcance: orden topológico = patrón de entrelazamientos de largo alcance. Los estados entrelazados de corto alcance son triviales en el sentido de que todos pertenecen a una fase. Sin embargo, en presencia de simetría, incluso los estados entrelazados de corto alcance no son triviales y pueden pertenecer a diferentes fases. Se dice que esas fases contienen orden SPT . El orden SPT generaliza la noción de aislante topológico a los sistemas que interactúan.

Algunos sugieren que el orden topológico (o más precisamente, la condensación de la red de cuerdas ) en los modelos bosónicos locales (espín) tienen el potencial de proporcionar un origen unificado para los fotones , electrones y otras partículas elementales en nuestro universo.

Ver también

Notas

Referencias

Referencias por categorías

Estados de Hall cuánticos fraccionales

Estados de espín quiral

Caracterización temprana de estados FQH

  • Orden de largo alcance fuera de la diagonal, confinamiento oblicuo y el efecto Hall cuántico fraccional, SM Girvin y AH MacDonald, Phys. Rev. Lett., 58 , 1252 (1987)
  • Modelo de teoría de campo efectivo para el efecto Hall cuántico fraccional, SC Zhang y TH Hansson y S. Kivelson, Phys. Rev. Lett., 62 , 82 (1989)

Orden topológico

Caracterización del orden topológico

Teoría efectiva del orden topológico

Mecanismo de orden topológico

Computación cuántica

Aparición de partículas elementales

Álgebra de operadores cuánticos

  • Yetter, David N. (1993). "TQFT'S de Homotopy 2-Types". Revista de teoría de nudos y sus ramificaciones . 2 (1): 113–123. doi : 10.1142 / s0218216593000076 .
  • Landsman NP y Ramazan B., Cuantificación de álgebras de Poisson asociadas a algebroides de Lie, en Proc. Conf. sobre Groupoids en Física, Análisis y Geometría (Boulder CO, 1999) ', Editores J. Kaminker et al., 159 {192 Contemp. Matemáticas. 282, Amer. Matemáticas. Soc., Providence RI, 2001, (también matemáticas {ph / 001005. )
  • Topología algebraica cuántica no abeliana (NAQAT) 20 de noviembre (2008), 87 páginas, Baianu, IC
  • Levin A. y Olshanetsky M., Algebroids hamiltonianos y deformaciones de estructuras complejas en curvas de Riemann, hep-th / 0301078v1.
  • Xiao-Gang Wen, Yong-Shi Wu e Y. Hatsugai., Álgebra del producto del operador quiral y excitaciones de los bordes de una gota de FQH (pdf), Nucl. Phys. B422 , 476 (1994): Se utilizó álgebra de producto de operador quiral para construir la función de onda de volumen, caracterizar los órdenes topológicos y calcular los estados de borde para algunos estados FQH no abelianos.
  • Xiao-Gang Wen y Yong-Shi Wu., Álgebra del producto del operador quiral oculto en ciertos estados FQH (pdf), Nucl. Phys. B419 , 455 (1994): demostró que los órdenes topológicos no abelianos están estrechamente relacionados con el álgebra del producto del operador quiral (en lugar de la teoría de campo conforme).
  • Teoría no abeliana.
  • Baianu, IC (2007). "Una ontología categórica no abeliana de los espaciotiempos y la gravedad cuántica". Axiomates . 17 (3–4): 353–408. doi : 10.1007 / s10516-007-9012-1 . S2CID  3909409 ..
  • R. Brown, PJ Higgins, PJ y R. Sivera, "Topología algebraica no beliana: espacios filtrados, complejos cruzados, grupoides homotópicos cúbicos" EMS Tracts in Mathematics Vol 15 (2011),
  • Una bibliografía para categorías y aplicaciones de topología algebraica en física teórica
  • Topología algebraica cuántica (QAT)