Estrógeno - Estrogen

Estrógeno
Clase de droga
Estradiol.svg
Estradiol , la principal hormona sexual de estrógeno en los seres humanos y un medicamento de uso generalizado.
Identificadores de clase
Usar Anticoncepción , menopausia , hipogonadismo , mujeres transgénero , cáncer de próstata , cáncer de mama , otros
Código ATC G03C
Objetivo biológico Receptores de estrógeno ( ERα , ERβ , mER (p. Ej., GPER , otros))
enlaces externos
Malla D004967
En Wikidata

El estrógeno o estrógeno , es una categoría de hormona sexual responsable del desarrollo y regulación del sistema reproductivo femenino y las características sexuales secundarias . Hay tres estrógenos endógenos principales que tienen actividad hormonal estrogénica: estrona (E1), estradiol (E2) y estriol (E3). El estradiol, un estrano , es el más potente y prevalente. Otro estrógeno llamado estetrol (E4) se produce solo durante el embarazo.

Los estrógenos se sintetizan en todos los vertebrados y algunos insectos. Su presencia tanto en vertebrados como en insectos sugiere que las hormonas sexuales estrogénicas tienen una historia evolutiva antigua. Cuantitativamente, los estrógenos circulan a niveles más bajos que los andrógenos tanto en hombres como en mujeres. Si bien los niveles de estrógeno son significativamente más bajos en los hombres que en las mujeres, los estrógenos, no obstante, tienen funciones fisiológicas importantes en los hombres.

Como todas las hormonas esteroides , los estrógenos se difunden fácilmente a través de la membrana celular . Una vez dentro de la célula, se unen y activan los receptores de estrógeno (ER) que a su vez modulan la expresión de muchos genes . Además, los estrógenos se unen y activan los receptores de estrógenos de membrana de señalización rápida (mER), como el GPER (GPR30).

Además de su función como hormonas naturales, los estrógenos se utilizan como medicamentos , por ejemplo, en la terapia hormonal para la menopausia , el control de la natalidad hormonal y la terapia hormonal feminizante para mujeres transgénero y personas no binarias .

Tipos y ejemplos

Estructuras de los principales estrógenos endógenos.
Estructuras químicas de los principales estrógenos endógenos.
Estrona (E1)
Estriol (E3)
La imagen de arriba contiene enlaces en los que se puede hacer clic
Tenga en cuenta el hidroxilo (-OH) grupos : estrona (E1) tiene uno, estradiol (E2) tiene dos, estriol (E3) tiene tres, y estetrol (E4) tiene cuatro.

Los cuatro principales estrógenos naturales en las mujeres son estrona (E1), estradiol (E2), estriol (E3) y estetrol (E4). El estradiol es el estrógeno predominante durante los años reproductivos tanto en términos de niveles séricos absolutos como en términos de actividad estrogénica. Durante la menopausia , la estrona es el estrógeno circulante predominante y durante el embarazo el estriol es el estrógeno circulante predominante en términos de niveles séricos. Administrado por inyección subcutánea en ratones, el estradiol es aproximadamente 10 veces más potente que la estrona y aproximadamente 100 veces más potente que el estriol. Por lo tanto, el estradiol es el estrógeno más importante en mujeres no embarazadas que se encuentran entre las etapas de la vida de la menarquia y la menopausia. Sin embargo, durante el embarazo, esta función cambia al estriol y, en las mujeres posmenopáusicas, la estrona se convierte en la forma principal de estrógeno en el cuerpo. Otro tipo de estrógeno llamado estetrol (E4) se produce solo durante el embarazo. Todas las diferentes formas de estrógeno se sintetizan a partir de andrógenos , específicamente testosterona y androstenediona , por la enzima aromatasa .

Los estrógenos endógenos menores, cuyas biosíntesis no involucran aromatasa , incluyen 27-hidroxicolesterol , dehidroepiandrosterona (DHEA), 7-oxo-DHEA , 7α-hidroxi-DHEA , 16α-hidroxi-DHEA , 7β-hidroxiepiandrosterona , androstenediona (A4), androstenediol (A5), 3α-androstanodiol y 3β-androstanodiol . Algunos metabolitos de estrógenos, como los estrógenos catecol 2-hidroxiestradiol , 2-hidroxiestrona , 4-hidroxiestradiol y 4-hidroxiestrona , así como la 16α-hidroxiestrona , también son estrógenos con diversos grados de actividad. La importancia biológica de estos estrógenos menores no está del todo clara.

Función biológica

Rangos de referencia para el contenido en sangre de estradiol, el tipo principal de estrógeno, durante el ciclo menstrual .

Las acciones de los estrógenos están mediadas por el receptor de estrógenos (ER), una proteína nuclear dimérica que se une al ADN y controla la expresión génica . Al igual que otras hormonas esteroides, el estrógeno ingresa pasivamente a la célula donde se une y activa el receptor de estrógeno. El complejo estrógeno: ER se une a secuencias de ADN específicas llamadas elemento de respuesta hormonal para activar la transcripción de genes diana (en un estudio que utilizó una línea celular de cáncer de mama dependiente de estrógenos como modelo, se identificaron 89 genes de este tipo). Dado que el estrógeno ingresa a todas las células, sus acciones dependen de la presencia del RE en la célula. El RE se expresa en tejidos específicos que incluyen el ovario, el útero y la mama. Los efectos metabólicos del estrógeno en mujeres posmenopáusicas se han relacionado con el polimorfismo genético del RE.

Si bien los estrógenos están presentes tanto en hombres como en mujeres , generalmente están presentes en niveles significativamente más altos en mujeres en edad reproductiva. Promueven el desarrollo de características sexuales secundarias femeninas , como los senos , y también participan en el engrosamiento del endometrio y otros aspectos de la regulación del ciclo menstrual. En los hombres, el estrógeno regula ciertas funciones del sistema reproductivo importantes para la maduración de los espermatozoides y puede ser necesario para una libido saludable .

Afinidades de los ligandos del receptor de estrógeno por ERα y ERβ
Ligando Otros nombres Afinidades de unión relativas (RBA,%) a Afinidades de unión absolutos (K i , nM) una Acción
ERα ERβ ERα ERβ
Estradiol E2; 17β-estradiol 100 100 0,115 (0,04-0,24) 0,15 (0,10–2,08) Estrógeno
Estrona E1; 17-cetoestradiol 16,39 (0,7–60) 6,5 (1,36–52) 0,445 (0,3–1,01) 1,75 (0,35–9,24) Estrógeno
Estriol E3; 16α-OH-17β-E2 12,65 (4,03–56) 26 (14,0–44,6) 0,45 (0,35–1,4) 0,7 (0,63-0,7) Estrógeno
Estetrol E4; 15α, 16α-Di-OH-17β-E2 4.0 3,0 4.9 19 Estrógeno
Alfatradiol 17α-estradiol 20,5 (7–80,1) 8.195 (2–42) 0,2–0,52 0,43-1,2 Metabolito
16-Epiestriol 16β-hidroxi-17β-estradiol 7.795 (4.94–63) 50 ? ? Metabolito
17-Epiestriol 16α-hidroxi-17α-estradiol 55,45 (29-103) 79–80 ? ? Metabolito
16,17-Epiestriol 16β-hidroxi-17α-estradiol 1.0 13 ? ? Metabolito
2-hidroxiestradiol 2-OH-E2 22 (7-81) 11–35 2.5 1.3 Metabolito
2-metoxiestradiol 2-MeO-E2 0,0027–2,0 1.0 ? ? Metabolito
4-hidroxiestradiol 4-OH-E2 13 (8–70) 7-56 1.0 1,9 Metabolito
4-metoxiestradiol 4-MeO-E2 2.0 1.0 ? ? Metabolito
2-hidroxiestrona 2-OH-E1 2.0–4.0 0,2-0,4 ? ? Metabolito
2-metoxiestrona 2-MeO-E1 <0,001– <1 <1 ? ? Metabolito
4-hidroxiestrona 4-OH-E1 1.0–2.0 1.0 ? ? Metabolito
4-metoxiestrona 4-MeO-E1 <1 <1 ? ? Metabolito
16α-hidroxiestrona 16 \ alpha-OH-E1; 17-cetoestriol 2.0–6.5 35 ? ? Metabolito
2-hidroxiestriol 2-OH-E3 2.0 1.0 ? ? Metabolito
4-metoxiestriol 4-MeO-E3 1.0 1.0 ? ? Metabolito
Sulfato de estradiol E2S; 3-sulfato de estradiol <1 <1 ? ? Metabolito
Disulfato de estradiol 3,17β-disulfato de estradiol 0,0004 ? ? ? Metabolito
Estradiol 3-glucurónido E2-3G 0,0079 ? ? ? Metabolito
Estradiol 17β-glucurónido E2-17G 0,0015 ? ? ? Metabolito
Estradiol 3-gluc. 17β-sulfato E2-3G-17S 0,0001 ? ? ? Metabolito
Sulfato de estrona E1S; 3-sulfato de estrona <1 <1 > 10 > 10 Metabolito
Benzoato de estradiol EB; 3-benzoato de estradiol 10 ? ? ? Estrógeno
17β-benzoato de estradiol E2-17B 11,3 32,6 ? ? Estrógeno
Éter metílico de estrona Estrona 3-metil éter 0,145 ? ? ? Estrógeno
ent -Estradiol 1-estradiol 1,31-12,34 9.44–80.07 ? ? Estrógeno
Equilin 7-deshidroestrona 13 (4,0-28,9) 13.0–49 0,79 0,36 Estrógeno
Equilenin 6,8-Didehidroestrona 2.0-15 7.0-20 0,64 0,62 Estrógeno
17β-dihidroequilina 7-deshidro-17β-estradiol 7,9-113 7,9-108 0,09 0,17 Estrógeno
17α-dihidroequilina 7-deshidro-17α-estradiol 18,6 (18–41) 14–32 0,24 0,57 Estrógeno
17β-dihidroequilenina 6,8-Didehidro-17β-estradiol 35–68 90-100 0,15 0,20 Estrógeno
17α-Dihidroequilenina 6,8-Didehidro-17α-estradiol 20 49 0,50 0,37 Estrógeno
Δ 8 -estradiol 8,9-Dehidro-17β-estradiol 68 72 0,15 0,25 Estrógeno
Δ 8 -estrona 8,9-deshidroestrona 19 32 0,52 0,57 Estrógeno
Etinilestradiol EE; 17α-Etinil-17β-E2 120,9 (68,8–480) 44,4 (2,0-144) 0.02–0.05 0,29-0,81 Estrógeno
Mestranol EE 3-metil éter ? 2.5 ? ? Estrógeno
Moxestrol RU-2858; 11β-metoxi-EE 35–43 5-20 0,5 2.6 Estrógeno
Metilestradiol 17α-metil-17β-estradiol 70 44 ? ? Estrógeno
Dietilestilbestrol DES; Stilbestrol 129,5 (89,1–468) 219,63 (61,2-295) 0,04 0,05 Estrógeno
Hexestrol Dihidrodietilestilbestrol 153,6 (31-302) 60–234 0,06 0,06 Estrógeno
Dienestrol Deshidroestilbestrol 37 (20,4-223) 56–404 0,05 0,03 Estrógeno
Benzestrol (B2) - 114 ? ? ? Estrógeno
Clorotrianiseno TACE 1,74 ? 15.30 ? Estrógeno
Trifeniletileno TPE 0,074 ? ? ? Estrógeno
Trifenilbromoetileno TPBE 2,69 ? ? ? Estrógeno
Tamoxifeno ICI-46,474 3 (0,1–47) 3,33 (0,28–6) 3.4–9.69 2.5 SERM
Afimoxifeno 4-hidroxitamoxifeno; 4-OHT 100,1 (1,7-257) 10 (0,98–339) 2,3 (0,1–3,61) 0,04–4,8 SERM
Toremifeno 4-clorotamoxifeno; 4-CT ? ? 7.14–20.3 15,4 SERM
Clomifeno MRL-41 25 (19,2–37,2) 12 0,9 1.2 SERM
Ciclofenilo F-6066; Sexovid 151-152 243 ? ? SERM
Nafoxidina U-11.000A 30,9–44 dieciséis 0,3 0,8 SERM
Raloxifeno - 41,2 (7,8–69) 5,34 (0,54–16) 0,188-0,52 20,2 SERM
Arzoxifeno LY-353,381 ? ? 0,179 ? SERM
Lasofoxifeno CP-336,156 10.2-166 19,0 0,229 ? SERM
Ormeloxifeno Centchroman ? ? 0.313 ? SERM
Levormeloxifeno 6720-CDRI; NNC-460 020 1,55 1,88 ? ? SERM
Ospemifeno Deaminohidroxitoremifeno 0,82–2,63 0,59-1,22 ? ? SERM
Bazedoxifeno - ? ? 0.053 ? SERM
Etacstil GW-5638 4.30 11,5 ? ? SERM
ICI-164,384 - 63,5 (3,70–97,7) 166 0,2 0,08 Antiestrógeno
Fulvestrant ICI-182,780 43,5 (9,4–325) 21,65 (2,05–40,5) 0,42 1.3 Antiestrógeno
Propilpirazoltriol PPT 49 (10,0–89,1) 0,12 0,40 92,8 Agonista ERα
16α-LE2 16α-lactona-17β-estradiol 14.6–57 0,089 0,27 131 Agonista ERα
16α-Yodo-E2 16α-yodo-17β-estradiol 30,2 2.30 ? ? Agonista ERα
Metilpiperidinopirazol MPP 11 0,05 ? ? Antagonista de ERα
Diarilpropionitrilo DPN 0,12-0,25 6.6-18 32,4 1,7 Agonista de ERβ
8β-VE2 8β-vinil-17β-estradiol 0,35 22.0–83 12,9 0,50 Agonista de ERβ
Prinaberel ERB-041; WAY-202,041 0,27 67–72 ? ? Agonista de ERβ
ERB-196 WAY-202,196 ? 180 ? ? Agonista de ERβ
Erteberel SERBA-1; LY-500,307 ? ? 2,68 0,19 Agonista de ERβ
SERBA-2 - ? ? 14,5 1,54 Agonista de ERβ
Coumestrol - 9.225 (0.0117–94) 64,125 (0,41–185) 0,14–80,0 0.07–27.0 Xenoestrógeno
Genisteína - 0,445 (0,0012–16) 33,42 (0,86–87) 2.6-126 0,3-12,8 Xenoestrógeno
Equol - 0,2–0,287 0,85 (0,10–2,85) ? ? Xenoestrógeno
Daidzein - 0,07 (0,0018–9,3) 0,7865 (0,04-17,1) 2.0 85,3 Xenoestrógeno
Biochanina A - 0,04 (0,022-0,15) 0,6225 (0,010-1,2) 174 8,9 Xenoestrógeno
Kaempferol - 0,07 (0,029-0,10) 2,2 (0,002–3,00) ? ? Xenoestrógeno
Naringenin - 0,0054 (<0,001–0,01) 0,15 (0,11–0,33) ? ? Xenoestrógeno
8-prenilnaringenina 8-PN 4.4 ? ? ? Xenoestrógeno
Quercetina - <0,001–0,01 0,002-0,040 ? ? Xenoestrógeno
Ipriflavona - <0.01 <0.01 ? ? Xenoestrógeno
Miroestrol - 0,39 ? ? ? Xenoestrógeno
Desoximiroestrol - 2.0 ? ? ? Xenoestrógeno
β-sitosterol - <0,001–0,0875 <0,001–0,016 ? ? Xenoestrógeno
Resveratrol - <0,001–0,0032 ? ? ? Xenoestrógeno
α-zearalenol - 48 (13–52,5) ? ? ? Xenoestrógeno
β-zearalenol - 0,6 (0,032-13) ? ? ? Xenoestrógeno
Zeranol α-zearalanol 48-111 ? ? ? Xenoestrógeno
Taleranol β-zearalanol 16 (13-17,8) 14 0,8 0,9 Xenoestrógeno
Zearalenona ZEN 7,68 (2,04-28) 9,45 (2,43–31,5) ? ? Xenoestrógeno
Zearalanona ZAN 0,51 ? ? ? Xenoestrógeno
El bisfenol A BPA 0.0315 (0.008–1.0) 0,135 (0,002–4,23) 195 35 Xenoestrógeno
Endosulfán EDS <0,001– <0,01 <0.01 ? ? Xenoestrógeno
Kepone Clordecona 0,0069-0,2 ? ? ? Xenoestrógeno
o, p ' -DDT - 0,0073-0,4 ? ? ? Xenoestrógeno
p, p ' -DDT - 0,03 ? ? ? Xenoestrógeno
Metoxicloro p, p ' -Dimetoxi-DDT 0.01 (<0.001–0.02) 0.01–0.13 ? ? Xenoestrógeno
HPTE Hidroxicloro; p, p ' -OH-DDT 1.2–1.7 ? ? ? Xenoestrógeno
Testosterona T; 4-Androstenolona <0,0001– <0,01 <0,002–0,040 > 5000 > 5000 Andrógino
Dihidrotestosterona DHT; 5α-Androstanolona 0.01 (<0.001–0.05) 0,0059-0,17 221–> 5000 73–1688 Andrógino
Nandrolona 19-Nortestosterona; 19-NT 0,01 0,23 765 53 Andrógino
Dehidroepiandrosterona DHEA; Prasterona 0.038 (<0.001–0.04) 0.019-0.07 245-1053 163–515 Andrógino
5-androstenediol A5; Androstenediol 6 17 3.6 0,9 Andrógino
4-androstenediol - 0,5 0,6 23 19 Andrógino
4-androstenediona A4; Androstenediona <0.01 <0.01 > 10000 > 10000 Andrógino
3α-androstanodiol 3α-Adiol 0,07 0,3 260 48 Andrógino
3β-androstanodiol 3β-adiol 3 7 6 2 Andrógino
Androstanediona 5α-androstanodiona <0.01 <0.01 > 10000 > 10000 Andrógino
Etiocolanediona 5β-androstanodiona <0.01 <0.01 > 10000 > 10000 Andrógino
Metiltestosterona 17α-metiltestosterona <0,0001 ? ? ? Andrógino
Etinil-3α-androstanodiol 17α-etinil-3α-adiol 4.0 <0,07 ? ? Estrógeno
Etinil-3β-androstanodiol 17α-etinil-3β-adiol 50 5,6 ? ? Estrógeno
Progesterona P4; 4-pregnenodiona <0,001-0,6 <0,001–0,010 ? ? Progestágeno
Noretisterona NETO; 17α-Etinil-19-NT 0,085 (0,0015– <0,1) 0,1 (0,01-0,3) 152 1084 Progestágeno
Noretinodrel 5 (10) -Noretisterona 0,5 (0,3-0,7) <0,1-0,22 14 53 Progestágeno
Tibolona 7α-metilnoretinodrel 0,5 (0,45–2,0) 0,2-0,076 ? ? Progestágeno
Δ 4 -Tibolona 7α-metilnoretisterona 0,069– <0,1 0,027– <0,1 ? ? Progestágeno
3α-hidroxitibolona - 2,5 (1,06–5,0) 0,6-0,8 ? ? Progestágeno
3β-hidroxitibolona - 1,6 (0,75–1,9) 0.070-0.1 ? ? Progestágeno
Notas al pie: a = (1) Los valores de afinidad de enlace tienen el formato "mediana (rango)" (# (# - #)), "rango" (# - #) o "valor" (#) según los valores disponibles . Los conjuntos completos de valores dentro de los rangos se pueden encontrar en el código Wiki. (2) Las afinidades de unión se determinaron mediante estudios de desplazamiento en una variedad de sistemas in vitro con estradiol marcado y proteínas ERα y ERβ humanas (excepto los valores de ERβ de Kuiper et al. (1997), que son ERβ de rata). Fuentes: consulte la página de la plantilla.
Afinidades relativas de los estrógenos por los receptores de hormonas esteroides y las proteínas sanguíneas.
Estrógeno Afinidades de unión relativas (%)
ER Arkansas PR GRAMO SEÑOR SHBG CBG
Estradiol 100 7,9 2.6 0,6 0,13 8,7-12 <0,1
Benzoato de estradiol ? ? ? ? ? <0,1–0,16 <0,1
Valerato de estradiol 2 ? ? ? ? ? ?
Estrona 11–35 <1 <1 <1 <1 2,7 <0,1
Sulfato de estrona 2 2 ? ? ? ? ?
Estriol 10-15 <1 <1 <1 <1 <0,1 <0,1
Equilin 40 ? ? ? ? ? 0
Alfatradiol 15 <1 <1 <1 <1 ? ?
Epiestriol 20 <1 <1 <1 <1 ? ?
Etinilestradiol 100-112 1-3 15-25 1-3 <1 0,18 <0,1
Mestranol 1 ? ? ? ? <0,1 <0,1
Metilestradiol 67 1-3 3–25 1-3 <1 ? ?
Moxestrol 12 <0,1 0,8 3.2 <0,1 <0,2 <0,1
Dietilestilbestrol ? ? ? ? ? <0,1 <0,1
Notas: Los ligandos de referencia (100%) fueron progesterona para PR , testosterona para AR , estradiol para RE , dexametasona para GR , aldosterona para MR , dihidrotestosterona para SHBG y cortisol para CBG . Fuentes: Ver plantilla.
Afinidades y potencias estrogénicas de los ésteres y éteres de estrógenos en los receptores de estrógenos.
Estrógeno Otros nombres RBA (%) a REP (%) b
ER ERα ERβ
Estradiol E2 100 100 100
3-sulfato de estradiol E2S; E2-3S ? 0,02 0,04
Estradiol 3-glucurónido E2-3G ? 0,02 0,09
Estradiol 17β-glucurónido E2-17G ? 0,002 0,0002
Benzoato de estradiol EB; 3-benzoato de estradiol 10 1.1 0,52
17β-acetato de estradiol E2-17A 31–45 24 ?
Diacetato de estradiol EDA; 3,17β-diacetato de estradiol ? 0,79 ?
Propionato de estradiol EP; 17β-propionato de estradiol 19-26 2.6 ?
Valerato de estradiol EV; 17β-valerato de estradiol 2-11 0.04-21 ?
Cipionato de estradiol CE; 17β-cipionato de estradiol ? C 4.0 ?
Palmitato de estradiol 17β-palmitato de estradiol 0 ? ?
Estearato de estradiol 17β-estearato de estradiol 0 ? ?
Estrona E1; 17-cetoestradiol 11 5.3–38 14
Sulfato de estrona E1S; 3-sulfato de estrona 2 0,004 0,002
Glucurónido de estrona E1G; Estrona 3-glucurónido ? <0,001 0,0006
Etinilestradiol EE; 17α-etinilestradiol 100 17–150 129
Mestranol EE 3-metil éter 1 1.3–8.2 0,16
Quinestrol EE 3-ciclopentil éter ? 0,37 ?
Notas a pie de página: a = Las afinidades de unión relativas (RBA) se determinaron mediante el desplazamiento in vitro del estradiol marcado de los receptores de estrógeno (RE) generalmente del citosol uterino de roedores . Los ésteres de estrógeno se hidrolizan de forma variable en estrógenos en estos sistemas (longitud de cadena de éster más corta -> mayor tasa de hidrólisis) y los ER RBA de los ésteres disminuyen fuertemente cuando se evita la hidrólisis. b = Las potencias estrogénicas relativas (REP) se calcularon a partir de concentraciones efectivas medias máximas (CE 50 ) que se determinaron mediante ensayos de producción in vitro de β-galactosidasa (β-gal) y proteína verde fluorescente (GFP) en levaduras que expresan REα y ERβ humano . Tanto las células de mamíferos como las levaduras tienen la capacidad de hidrolizar los ésteres de estrógenos. c = Las afinidades del cipionato de estradiol por los RE son similares a las del valerato de estradiol y el benzoato de estradiol ( figura ). Fuentes: consulte la página de la plantilla.
Propiedades biológicas seleccionadas de los estrógenos endógenos en ratas
Estrógeno ER RBA (%) Peso uterino (%) Uterotrofia Niveles de LH (%) SHBG RBA (%)
Control - 100 - 100 -
Estradiol 100 506 ± 20 +++ 12-19 100
Estrona 11 ± 8 490 ± 22 +++ ? 20
Estriol 10 ± 4 468 ± 30 +++ 8-18 3
Estetrol 0,5 ± 0,2 ? Inactivo ? 1
17α-estradiol 4,2 ± 0,8 ? ? ? ?
2-hidroxiestradiol 24 ± 7 285 ± 8 + b 31–61 28
2-metoxiestradiol 0,05 ± 0,04 101 Inactivo ? 130
4-hidroxiestradiol 45 ± 12 ? ? ? ?
4-metoxiestradiol 1,3 ± 0,2 260 ++ ? 9
4-fluoroestradiol a 180 ± 43 ? +++ ? ?
2-hidroxiestrona 1,9 ± 0,8 130 ± 9 Inactivo 110-142 8
2-metoxiestrona 0,01 ± 0,00 103 ± 7 Inactivo 95-100 120
4-hidroxiestrona 11 ± 4 351 ++ 21–50 35
4-metoxiestrona 0,13 ± 0,04 338 ++ 65–92 12
16α-hidroxiestrona 2,8 ± 1,0 552 ± 42 +++ 7-24 <0,5
2-hidroxiestriol 0,9 ± 0,3 302 + b ? ?
2-metoxiestriol 0,01 ± 0,00 ? Inactivo ? 4
Notas: Los valores son la media ± DE o rango. ER RBA = afinidad de unión relativa a los receptores de estrógenos del citosol uterino de rata . Peso uterino = Cambio porcentual en el peso húmedo uterino de ratas ovariectomizadas después de 72 horas con la administración continua de 1 μg / hora mediante bombas osmóticas implantadas subcutáneamente . Niveles de LH = niveles de hormona luteinizante en relación con el valor inicial de ratas ovariectomizadas después de 24 a 72 horas de administración continua mediante implante subcutáneo. Notas al pie: a = sintético (es decir, no endógeno ). b = Efecto uterotrófico atípico que se estabiliza en 48 horas (la uterotrofia de estradiol continúa linealmente hasta 72 horas). Fuentes: Ver plantilla.

Resumen de acciones

Desarrollo puberal femenino

Los estrógenos son responsables del desarrollo de las características sexuales secundarias femeninas durante la pubertad , incluido el desarrollo de los senos , el ensanchamiento de las caderas y la distribución de la grasa femenina . Por el contrario, los andrógenos son responsables del crecimiento del vello púbico y corporal , así como del acné y el olor axilar .

Desarrollo mamario

El estrógeno, junto con la hormona del crecimiento (GH) y su producto secretor , el factor de crecimiento similar a la insulina 1 (IGF-1), es fundamental para mediar el desarrollo de las mamas durante la pubertad , así como la maduración de las mamas durante el embarazo en preparación para la lactancia y la lactancia . El estrógeno es principal y directamente responsable de inducir el componente ductal del desarrollo de las mamas, así como de causar la deposición de grasa y el crecimiento del tejido conectivo . También participa indirectamente en el componente lobuloalveolar, aumentando la expresión del receptor de progesterona en las mamas e induciendo la secreción de prolactina . Permitido por el estrógeno, la progesterona y la prolactina trabajan juntas para completar el desarrollo lobuloalveolar durante el embarazo.

Los andrógenos como la testosterona se oponen poderosamente a la acción de los estrógenos en los senos, por ejemplo, reduciendo la expresión del receptor de estrógenos en ellos.

Sistema reproductivo femenino

Los estrógenos son responsables de la maduración y el mantenimiento de la vagina y el útero , y también participan en la función ovárica , como la maduración de los folículos ováricos . Además, los estrógenos juegan un papel importante en la regulación de la secreción de gonadotropinas . Por estas razones, los estrógenos son necesarios para la fertilidad femenina .

Neuroprotección y reparación del ADN

Los mecanismos de reparación del ADN regulados por estrógenos en el cerebro tienen efectos neuroprotectores. El estrógeno regula la transcripción de genes de reparación por escisión de bases de ADN , así como la translocación de las enzimas de reparación por escisión de bases entre diferentes compartimentos subcelulares.

Cerebro y comportamiento

Impulso sexual

Los estrógenos están involucrados en la libido (deseo sexual) tanto en mujeres como en hombres.

Cognición

Las puntuaciones de memoria verbal se utilizan con frecuencia como una medida de la cognición de nivel superior . Estos puntajes varían en proporción directa a los niveles de estrógeno a lo largo del ciclo menstrual, el embarazo y la menopausia. Además, los estrógenos cuando se administran poco después de la menopausia natural o quirúrgica previenen la disminución de la memoria verbal. Por el contrario, los estrógenos tienen poco efecto sobre la memoria verbal si se administran por primera vez años después de la menopausia. Los estrógenos también influyen positivamente en otras medidas de la función cognitiva. Sin embargo, el efecto de los estrógenos sobre la cognición no es uniformemente favorable y depende del momento de la dosis y del tipo de habilidad cognitiva que se mide.

Los efectos protectores de los estrógenos sobre la cognición pueden estar mediados por los efectos antiinflamatorios del estrógeno en el cerebro. Los estudios también han demostrado que el gen del alelo Met y el nivel de estrógeno median la eficiencia de las tareas de memoria de trabajo dependientes de la corteza prefrontal . Los investigadores han instado a que se realicen más investigaciones para esclarecer el papel del estrógeno y su potencial para mejorar la función cognitiva.

Salud mental

Se considera que el estrógeno juega un papel importante en la salud mental de las mujeres . La abstinencia repentina de estrógenos, los estrógenos fluctuantes y los períodos de niveles bajos sostenidos de estrógenos se correlacionan con una disminución significativa del estado de ánimo. Se ha demostrado que la recuperación clínica de la depresión posparto , perimenopausia y posmenopausia es eficaz después de estabilizar y / o restaurar los niveles de estrógeno. La exacerbación menstrual (incluida la psicosis menstrual) generalmente se desencadena por niveles bajos de estrógeno y, a menudo, se confunde con un trastorno disfórico premenstrual .

Las compulsiones en ratones machos de laboratorio, como los que padecen un trastorno obsesivo compulsivo (TOC), pueden deberse a niveles bajos de estrógeno. Cuando los niveles de estrógeno aumentaron a través del aumento de la actividad de la enzima aromatasa en ratones de laboratorio machos, los rituales del TOC disminuyeron drásticamente. Los niveles de proteína hipotalámica en el gen COMT se mejoran al aumentar los niveles de estrógeno que se cree que devuelven a los ratones que mostraron rituales de TOC a la actividad normal. En última instancia, se sospecha de la deficiencia de aromatasa, que está involucrada en la síntesis de estrógeno en humanos y tiene implicaciones terapéuticas en humanos que tienen un trastorno obsesivo-compulsivo.

Se ha demostrado que la aplicación local de estrógeno en el hipocampo de rata inhibe la recaptación de serotonina. Por el contrario, se ha demostrado que la aplicación local de estrógenos bloquea la capacidad de la fluvoxamina para ralentizar el aclaramiento de serotonina, lo que sugiere que las mismas vías que participan en la eficacia de los ISRS también pueden verse afectadas por componentes de las vías de señalización local de los estrógenos.

Paternidad

Los estudios también han encontrado que los padres tenían niveles más bajos de cortisol y testosterona pero niveles más altos de estrógeno (estradiol) que los que no eran padres.

Atracones

El estrógeno puede desempeñar un papel en la supresión de los atracones . La terapia de reemplazo hormonal con estrógenos puede ser un posible tratamiento para los atracones en las mujeres. Se ha demostrado que el reemplazo de estrógenos suprime las conductas de atracones en ratones hembra. El mecanismo por el cual el reemplazo de estrógenos inhibe la ingesta compulsiva implica el reemplazo de neuronas de serotonina (5-HT). Se ha descubierto que las mujeres que exhiben conductas de atracones tienen una mayor captación cerebral de la neurona 5-HT y, por lo tanto, menos del neurotransmisor serotonina en el líquido cefalorraquídeo. El estrógeno actúa para activar las neuronas 5-HT, lo que lleva a la supresión de conductas alimentarias como los atracones.

También se sugiere que existe una interacción entre los niveles hormonales y la alimentación en diferentes puntos del ciclo menstrual femenino . La investigación ha predicho un aumento de la alimentación emocional durante el flujo hormonal, que se caracteriza por niveles altos de progesterona y estradiol que ocurren durante la fase lútea media . Se plantea la hipótesis de que estos cambios ocurren debido a cambios cerebrales a lo largo del ciclo menstrual que probablemente sean un efecto genómico de las hormonas. Estos efectos producen cambios en el ciclo menstrual, que dan como resultado la liberación de hormonas que conducen a cambios de comportamiento, en particular atracones y comidas emocionales. Estos ocurren de manera especialmente prominente entre las mujeres que son genéticamente vulnerables a los fenotipos de atracones.

Los atracones se asocian con una disminución del estradiol y un aumento de la progesterona. Klump y col. La progesterona puede moderar los efectos de niveles bajos de estradiol (como durante la conducta alimentaria desregulada), pero esto puede ser cierto solo en mujeres que han tenido episodios de atracones (EB) diagnosticados clínicamente. La alimentación desregulada está más fuertemente asociada con tales hormonas ováricas en mujeres con BE que en mujeres sin BE.

La implantación de gránulos de 17β-estradiol en ratones ovariectomizados redujo significativamente los comportamientos de atracones y las inyecciones de GLP-1 en ratones ovariectomizados disminuyeron los comportamientos de atracones.

Las asociaciones entre los atracones, la fase del ciclo menstrual y las hormonas ováricas se correlacionaron.

Masculinización en roedores

En los roedores, los estrógenos (aromatizados localmente a partir de andrógenos en el cerebro) juegan un papel importante en la diferenciación psicosexual, por ejemplo, masculinizando el comportamiento territorial; lo mismo no es cierto en los seres humanos. En los seres humanos, los efectos masculinizantes de los andrógenos prenatales sobre el comportamiento (y otros tejidos, con la posible excepción de los efectos sobre los huesos) parecen actuar exclusivamente a través del receptor de andrógenos. En consecuencia, se ha cuestionado la utilidad de los modelos de roedores para estudiar la diferenciación psicosexual humana.

Sistema esquelético

Los estrógenos son responsables tanto del brote de crecimiento puberal, que provoca una aceleración del crecimiento lineal, como del cierre epifisario , que limita la altura y la longitud de las extremidades , tanto en mujeres como en hombres. Además, los estrógenos son responsables de la maduración ósea y el mantenimiento de la densidad mineral ósea durante toda la vida. Debido al hipoestrogenismo, el riesgo de osteoporosis aumenta durante la menopausia .

Sistema cardiovascular

Las mujeres sufren menos enfermedades cardíacas debido a la acción vasculoprotectora de los estrógenos, que ayuda a prevenir la aterosclerosis. También ayuda a mantener el delicado equilibrio entre la lucha contra las infecciones y la protección de las arterias del daño, lo que reduce el riesgo de enfermedad cardiovascular. Durante el embarazo , los niveles altos de estrógenos aumentan la coagulación y el riesgo de tromboembolismo venoso .

Incidencia absoluta y relativa de tromboembolismo venoso (TEV) durante el embarazo y el puerperio
Incidencia absoluta de primer TEV por 10,000 personas-año durante el embarazo y el período posparto
Datos suecos A Datos suecos B Datos ingleses Datos daneses
Periodo de tiempo norte Tasa (95% CI) norte Tasa (95% CI) norte Tasa (95% CI) norte Tasa (95% CI)
Embarazo externo 1105 4,2 (4,0–4,4) 1015 3,8 (?) 1480 3,2 (3,0–3,3) 2895 3,6 (3,4–3,7)
Anteparto 995 20,5 (19,2-21,8) 690 14,2 (13,2-15,3) 156 9,9 (8,5-11,6) 491 10,7 (9,7-11,6)
  Trimestre 1 207 13,6 (11,8-15,5) 172 11,3 (9,7-13,1) 23 4,6 (3,1–7,0) 61 4,1 (3,2–5,2)
  Trimestre 2 275 17,4 (15,4-19,6) 178 11,2 (9,7-13,0) 30 5,8 (4,1–8,3) 75 5,7 (4,6–7,2)
  Trimestre 3 513 29,2 (26,8–31,9) 340 19,4 (17,4-21,6) 103 18,2 (15,0-22,1) 355 19,7 (17,7-21,9)
Alrededor de la entrega 115 154,6 (128,8-185,6) 79 106,1 (85,1-132,3) 34 142,8 (102,0–199,8)
-
Posparto 649 42,3 (39,2–45,7) 509 33,1 (30,4–36,1) 135 27,4 (23,1–32,4) 218 17,5 (15,3-20,0)
  Posparto temprano 584 75,4 (69,6–81,8) 460 59,3 (54,1–65,0) 177 46,8 (39,1–56,1) 199 30,4 (26,4–35,0)
  Posparto tardío sesenta y cinco 8,5 (7,0-10,9) 49 6,4 (4,9–8,5) 18 7,3 (4,6-11,6) 319 3,2 (1,9–5,0)
Razones de tasas de incidencia (TIR) ​​de la primera TEV durante el embarazo y el período posparto
Datos suecos A Datos suecos B Datos ingleses Datos daneses
Periodo de tiempo TIR * (IC del 95%) TIR * (IC del 95%) TIR (IC del 95%) † TIR (IC del 95%) †
Embarazo externo
Referencia (es decir, 1,00)
Anteparto 5,08 (4,66–5,54) 3,80 (3,44–4,19) 3,10 (2,63–3,66) 2,95 (2,68–3,25)
  Trimestre 1 3,42 (2,95–3,98) 3,04 (2,58–3,56) 1,46 (0,96-2,20) 1,12 (0,86–1,45)
  Trimestre 2 4,31 (3,78–4,93) 3,01 (2,56–3,53) 1,82 (1,27-2,62) 1,58 (1,24-1,99)
  Trimestre 3 7,14 (6,43–7,94) 5,12 (4,53–5,80) 5,69 (4,66–6,95) 5,48 (4,89–6,12)
Alrededor de la entrega 37,5 (30,9–44,45) 27,97 (22,24–35,17) 44,5 (31,68–62,54)
-
Posparto 10,21 (9,27-11,25) 8,72 (7,83–9,70) 8.54 (7.16–10.19) 4,85 (4,21–5,57)
  Posparto temprano 19,27 (16,53-20,21) 15,62 (14,00-17,45) 14,61 (12,10-17,67) 8,44 (7,27–9,75)
  Posparto tardío 2,06 (1,60–2,64) 1,69 (1,26-2,25) 2,29 (1,44–3,65) 0,89 (0,53–1,39)
Notas: Datos suecos A = Uso de cualquier código para TEV independientemente de la confirmación. Datos suecos B = Utilizando solo TEV confirmado por algoritmo. Posparto temprano = Primeras 6 semanas después del parto. Posparto tardío = Más de 6 semanas después del parto. * = Ajustado por edad y año calendario. † = Razón no ajustada calculada en base a los datos proporcionados. Fuente:

Sistema inmune

El estrógeno tiene propiedades antiinflamatorias y ayuda en la movilización de glóbulos blancos polimorfonucleares o neutrófilos .

Condiciones asociadas

Los investigadores han implicado a los estrógenos en varias afecciones dependientes de estrógenos , como el cáncer de mama ER positivo , así como en una serie de afecciones genéticas que involucran la señalización o el metabolismo de los estrógenos , como el síndrome de insensibilidad a los estrógenos , la deficiencia de aromatasa y el síndrome de exceso de aromatasa .

Los niveles altos de estrógeno pueden amplificar las respuestas de las hormonas del estrés en situaciones estresantes .

Bioquímica

Biosíntesis

Esteroidogénesis , que muestra los estrógenos en la parte inferior derecha como en un triángulo rosa.

Los estrógenos, en las mujeres, son producidos principalmente por los ovarios y, durante el embarazo, la placenta . La hormona estimulante del folículo (FSH) estimula la producción ovárica de estrógenos por las células de la granulosa de los folículos ováricos y cuerpos lúteos . Algunos estrógenos también son producidos en cantidades más pequeñas por otros tejidos como el hígado , el páncreas , los huesos , las glándulas suprarrenales , la piel , el cerebro , el tejido adiposo y las mamas . Estas fuentes secundarias de estrógenos son especialmente importantes en mujeres posmenopáusicas. La vía de la biosíntesis de estrógenos en los tejidos extragonadales es diferente. Estos tejidos no pueden sintetizar esteroides C19 y, por lo tanto, dependen del suministro de C19 de otros tejidos y del nivel de aromatasa.

En las mujeres, la síntesis de estrógenos comienza en las células de la teca interna del ovario, mediante la síntesis de androstenediona a partir del colesterol . La androstenediona es una sustancia de actividad androgénica débil que sirve predominantemente como precursor de andrógenos más potentes como la testosterona y el estrógeno. Este compuesto atraviesa la membrana basal hacia las células de la granulosa circundantes, donde se convierte inmediatamente en estrona o en testosterona y luego en estradiol en un paso adicional. La conversión de androstenediona en testosterona es catalizada por 17β-hidroxiesteroide deshidrogenasa (17β-HSD), mientras que la conversión de androstenediona y testosterona en estrona y estradiol, respectivamente, es catalizada por aromatasa, enzimas que se expresan en las células de la granulosa. Por el contrario, las células de la granulosa carecen de 17α-hidroxilasa y 17,20-liasa , mientras que las células de teca expresan estas enzimas y 17β-HSD pero carecen de aromatasa. Por lo tanto, tanto las células de la granulosa como las de la teca son esenciales para la producción de estrógeno en los ovarios.

Los niveles de estrógeno varían a lo largo del ciclo menstrual , con niveles más altos cerca del final de la fase folicular justo antes de la ovulación .

Tenga en cuenta que en los hombres, las células de Sertoli también producen estrógeno cuando la FSH se une a sus receptores de FSH.

Tasas de producción, tasas de secreción, tasas de eliminación y niveles en sangre de las principales hormonas sexuales
Sexo Hormona sexual
Fase reproductiva

Tasa de producción de sangre

Tasa de secreción gonadal

Tasa de aclaramiento metabólico
Rango de referencia (niveles séricos)
Unidades SI No SI unidades
Hombres Androstenediona
-
2,8 mg / día 1,6 mg / día 2200 L / día 2.8–7.3 nmol / L 80-210 ng / dL
Testosterona
-
6,5 mg / día 6,2 mg / día 950 L / día 6,9 a 34,7 nmol / L 200–1000 ng / dL
Estrona
-
150 μg / día 110 μg / día 2050 L / día 37 a 250 pmol / L 10 a 70 pg / ml
Estradiol
-
60 μg / día 50 μg / día 1600 L / día <37 a 210 pmol / L 10 a 57 pg / ml
Sulfato de estrona
-
80 μg / día Insignificante 167 L / día 600-2500 pmol / L 200–900 pg / mL
Mujeres Androstenediona
-
3,2 mg / día 2,8 mg / día 2000 L / día 3,1-12,2 nmol / L 89–350 ng / dL
Testosterona
-
190 μg / día 60 μg / día 500 L / día 0,7–2,8 nmol / L 20 a 81 ng / dl
Estrona Fase folicular 110 μg / día 80 μg / día 2200 L / día 110 a 400 pmol / L 30-110 pg / mL
Fase lútea 260 μg / día 150 μg / día 2200 L / día 310–660 pmol / L 80-180 pg / ml
Post menopausia 40 μg / día Insignificante 1610 L / día 22 a 230 pmol / L 6 a 60 pg / ml
Estradiol Fase folicular 90 μg / día 80 μg / día 1200 L / día <37–360 pmol / L 10 a 98 pg / ml
Fase lútea 250 μg / día 240 μg / día 1200 L / día 699-1250 pmol / L 190–341 pg / mL
Post menopausia 6 μg / día Insignificante 910 L / día <37-140 pmol / L 10 a 38 pg / ml
Sulfato de estrona Fase folicular 100 μg / día Insignificante 146 L / día 700–3600 pmol / L 250-1300 pg / mL
Fase lútea 180 μg / día Insignificante 146 L / día 1100–7300 pmol / L 400 a 2600 pg / ml
Progesterona Fase folicular 2 mg / día 1,7 mg / día 2100 L / día 0,3-3 nmol / L 0,1 a 0,9 ng / ml
Fase lútea 25 mg / día 24 mg / día 2100 L / día 19–45 nmol / L 6–14 ng / ml
Notas y fuentes
Notas: "La concentración de un esteroide en la circulación está determinada por la velocidad a la que se secreta por las glándulas, la velocidad del metabolismo de los precursores o prehormonas en el esteroide y la velocidad a la que los tejidos lo extraen y metabolizan. La tasa de secreción de un esteroide se refiere a la secreción total del compuesto de una glándula por unidad de tiempo. Las tasas de secreción se han evaluado tomando muestras del efluente venoso de una glándula a lo largo del tiempo y restando la concentración de hormonas venosas arteriales y periféricas. La tasa de aclaramiento metabólico de un esteroide se define como el volumen de sangre que se ha eliminado completamente de la hormona por unidad de tiempo. La tasa de producción de una hormona esteroide se refiere a la entrada en la sangre del compuesto de todas las fuentes posibles, incluida la secreción de las glándulas y la conversión de prohormonas en el esteroide de interés. En estado estacionario, la cantidad de hormona que ingresa a la sangre de todas las fuentes será igual a la velocidad a la que se está cl orejas (tasa de aclaramiento metabólico) multiplicado por la concentración sanguínea (tasa de producción = tasa de aclaramiento metabólico × concentración). Si hay poca contribución del metabolismo de las prohormonas al grupo circulante de esteroides, entonces la tasa de producción se aproximará a la tasa de secreción ". Fuentes: consulte la plantilla.

Distribución

Los estrógenos son proteínas plasmáticas unidas a la albúmina y / o globulina transportadora de hormonas sexuales en la circulación.

Metabolismo

Los estrógenos se metabolizan a través de la hidroxilación por citocromo P450 enzimas tales como CYP1A1 y CYP3A4 y a través de la conjugación por sulfotransferasas estrógeno ( sulfatación ) y UDP-glucuronil ( glucuronidación ). Además, el estradiol es deshidrogenado por la 17β-hidroxiesteroide deshidrogenasa en el estrógeno estrona mucho menos potente. Estas reacciones ocurren principalmente en el hígado , pero también en otros tejidos .

Metabolismo de los estrógenos en humanos
La imagen de arriba contiene enlaces en los que se puede hacer clic
Descripción: Las vías metabólicas involucradas en el metabolismo del estradiol y otros estrógenos naturales (p. Ej., Estrona , estriol ) en humanos. Además de las transformaciones metabólicas que se muestran en el diagrama, se produce conjugación (p. Ej., Sulfatación y glucuronidación ) en el caso del estradiol y los metabolitos del estradiol que tienen uno o más grupos hidroxilo (–OH) disponibles . Fuentes: consulte la página de la plantilla.

Excreción

Los estrógenos se excretan principalmente por los riñones como conjugados a través de la orina .

Uso medico

Los estrógenos se utilizan como medicamentos , principalmente en la anticoncepción hormonal , la terapia de reemplazo hormonal y para tratar la disforia de género en mujeres transgénero y otras personas transfemininas como parte de la terapia hormonal feminizante.

Química

Las hormonas esteroides estrógeno son esteroides estrano .

Historia

En 1929, Adolf Butenandt y Edward Adelbert Doisy aislaron y purificaron independientemente la estrona, el primer estrógeno descubierto. Luego, se descubrieron estriol y estradiol en 1930 y 1933, respectivamente. Poco después de su descubrimiento, se introdujeron los estrógenos, tanto naturales como sintéticos, para uso médico. Los ejemplos incluyen glucurónido de estriol ( Emmenin , Progynon ), benzoato de estradiol , estrógenos conjugados ( Premarin ), dietilestilbestrol y etinilestradiol .

La palabra estrógeno se deriva del griego antiguo . Se deriva de "oestros" (un estado periódico de actividad sexual en las hembras de mamíferos) y genos (generación). Se publicó por primera vez a principios de la década de 1920 y se denominó "oestrin". Con los años, el inglés americano adaptó la ortografía del estrógeno para que encajara con su pronunciación fonética. Sin embargo, tanto el estrógeno como el estrógeno se utilizan hoy en día, aunque algunos todavía desean mantener su ortografía original, ya que refleja el origen de la palabra.

sociedad y Cultura

Etimología

El nombre estrógeno se deriva del griego οἶστρος ( oistros ), que literalmente significa "brío o inspiración" pero en sentido figurado pasión o deseo sexual, y el sufijo -gen , que significa "productor de".

Medio ambiente

Se han identificado en el medio ambiente una variedad de sustancias sintéticas y naturales que poseen actividad estrogénica y se denominan xenoestrógenos .

Los estrógenos se encuentran entre la amplia gama de compuestos disruptores endocrinos (EDC) porque tienen una alta potencia estrogénica. Cuando un EDC llega al medio ambiente, puede causar disfunción reproductiva masculina en la vida silvestre. El estrógeno excretado de los animales de granja llega a los sistemas de agua dulce. Durante el período de germinación de la reproducción, los peces están expuestos a niveles bajos de estrógeno que pueden causar disfunción reproductiva en los peces machos.

Productos cosméticos

Algunos champús para el cabello en el mercado incluyen estrógenos y extractos de placenta; otros contienen fitoestrógenos . En 1998, hubo informes de casos de cuatro niñas afroamericanas prepúberes que desarrollaron senos después de la exposición a estos champús. En 1993, la FDA determinó que no todos los medicamentos de venta libre que contienen hormonas aplicados tópicamente para uso humano son generalmente reconocidos como seguros y efectivos y están mal etiquetados. Una regla propuesta adjunta se refiere a los cosméticos, y concluye que cualquier uso de estrógenos naturales en un producto cosmético convierte al producto en un nuevo medicamento no aprobado y que cualquier cosmético que utilice el término "hormona" en el texto de su etiqueta o en su declaración de ingredientes implica una declaración de medicamentos, sometiendo dicho producto a medidas reglamentarias.

Además de considerarse medicamentos mal etiquetados, los productos que afirman contener extracto de placenta también pueden considerarse cosméticos mal etiquetados si el extracto se ha preparado a partir de placentas de las que se han eliminado las hormonas y otras sustancias biológicamente activas y la sustancia extraída consiste principalmente en proteínas. . La FDA recomienda que esta sustancia se identifique con un nombre que no sea "extracto de placenta" y que describa su composición con mayor precisión porque los consumidores asocian el nombre "extracto de placenta" con un uso terapéutico de alguna actividad biológica.

Ver también

Referencias

enlaces externos