Cosmoquímica - Cosmochemistry

Los meteoritos a menudo se estudian como parte de la cosmoquímica.

La cosmoquímica (del griego κόσμος kósmos , "universo" y χημεία khemeía ) o cosmología química es el estudio de la composición química de la materia en el universo y los procesos que condujeron a esas composiciones. Esto se hace principalmente mediante el estudio de la composición química de meteoritos y otras muestras físicas. Dado que los cuerpos parentales de los asteroides de los meteoritos fueron algunos de los primeros materiales sólidos en condensarse de la nebulosa solar temprana, los cosmoquímicos están generalmente, pero no exclusivamente, interesados ​​en los objetos contenidos dentro del Sistema Solar .

Historia

En 1938, el mineralogista suizo Victor Goldschmidt y sus colegas compilaron una lista de lo que llamaron "abundancias cósmicas" basándose en su análisis de varias muestras terrestres y de meteoritos. Goldschmidt justificó la inclusión de datos de composición de meteoritos en su tabla afirmando que las rocas terrestres estaban sujetas a una cantidad significativa de cambios químicos debido a los procesos inherentes de la Tierra y la atmósfera. Esto significaba que el estudio exclusivo de las rocas terrestres no proporcionaría una imagen general precisa de la composición química del cosmos. Por lo tanto, Goldschmidt concluyó que también se debe incluir material extraterrestre para producir datos más precisos y sólidos. Esta investigación se considera la base de la cosmoquímica moderna.

Durante las décadas de 1950 y 1960, la cosmoquímica se volvió más aceptada como ciencia. Harold Urey , considerado uno de los padres de la cosmoquímica, se dedicó a una investigación que finalmente condujo a comprender el origen de los elementos y la abundancia química de las estrellas. En 1956, Urey y su colega, el científico alemán Hans Suess , publicaron la primera tabla de abundancias cósmicas para incluir isótopos basados ​​en el análisis de meteoritos.

El continuo perfeccionamiento de la instrumentación analítica a lo largo de la década de 1960, especialmente la de la espectrometría de masas , permitió a los cosmoquímicos realizar análisis detallados de las abundancias isotópicas de elementos dentro de los meteoritos. En 1960, John Reynolds determinó, mediante el análisis de nucleidos de vida corta dentro de los meteoritos, que los elementos del Sistema Solar se formaron antes que el propio Sistema Solar, que comenzó a establecer una línea de tiempo de los procesos del Sistema Solar temprano.

Meteoritos

Los meteoritos son una de las herramientas más importantes que tienen los cosmoquímicos para estudiar la naturaleza química del Sistema Solar. Muchos meteoritos provienen de material que es tan antiguo como el propio Sistema Solar y, por lo tanto, proporcionan a los científicos un registro de la nebulosa solar temprana . Las condritas carbonáceas son especialmente primitivas; es decir, han conservado muchas de sus propiedades químicas desde su formación hace 4.560 millones de años y, por lo tanto, son un foco importante de las investigaciones cosmoquímicas.

Los meteoritos más primitivos también contienen una pequeña cantidad de material (<0,1%) que ahora se reconoce como granos presolares más antiguos que el propio Sistema Solar, y que se derivan directamente de los restos de las supernovas individuales que suministraron el polvo de que formó el Sistema Solar. Estos granos son reconocibles por su química exótica que es ajena al Sistema Solar (como las matrices de grafito, diamante o carburo de silicio). También suelen tener proporciones de isótopos que no son las del resto del Sistema Solar (en particular, el Sol) y que difieren entre sí, lo que indica fuentes en una serie de diferentes eventos explosivos de supernovas. Los meteoritos también pueden contener granos de polvo interestelar, que se han acumulado de elementos no gaseosos en el medio interestelar, como un tipo de polvo cósmico compuesto ("polvo de estrellas")

Hallazgos recientes de la NASA , basados ​​en estudios de meteoritos encontrados en la Tierra , sugieren que los componentes de ADN y ARN ( adenina , guanina y moléculas orgánicas relacionadas ), bloques de construcción para la vida tal como la conocemos, pueden formarse extraterrestre en el espacio exterior .

Cometas

El 30 de julio de 2015, los científicos informaron que tras el primer aterrizaje del módulo de aterrizaje Philae en la superficie del cometa 67 / P , las mediciones de los instrumentos de la COSAC y Ptolomeo revelaron dieciséis compuestos orgánicos , cuatro de los cuales fueron vistos por primera vez en un cometa. incluyendo acetamida , acetona , isocianato de metilo y propionaldehído .

Investigar

En 2004, los científicos informaron haber detectado las firmas espectrales del antraceno y el pireno en la luz ultravioleta emitida por la nebulosa del Rectángulo Rojo (nunca antes se habían encontrado otras moléculas tan complejas en el espacio exterior). Este descubrimiento se consideró una confirmación de una hipótesis de que a medida que las nebulosas del mismo tipo que el Rectángulo Rojo se acercan al final de sus vidas, las corrientes de convección hacen que el carbono y el hidrógeno en el núcleo de las nebulosas queden atrapados en los vientos estelares y se irradien hacia afuera. A medida que se enfrían, los átomos supuestamente se unen entre sí de diversas formas y eventualmente forman partículas de un millón o más de átomos. Los científicos infirieron que desde que descubrieron los hidrocarburos aromáticos policíclicos (HAP) —que pudieron haber sido vitales en la formación de la vida temprana en la Tierra— en una nebulosa, por necesidad deben originarse en nebulosas.

En agosto de 2009, los científicos de la NASA identificaron uno de los componentes químicos fundamentales de la vida (el aminoácido glicina ) en un cometa por primera vez.

En 2010, se detectaron fullerenos (o " buckyballs ") en nebulosas. Los fullerenos han estado implicados en el origen de la vida; según la astrónoma Letizia Stanghellini, "Es posible que buckybolas del espacio exterior proporcionaran semillas para la vida en la Tierra".

En agosto de 2011, los hallazgos de la NASA , basados ​​en estudios de meteoritos encontrados en la Tierra, sugieren que los componentes de ADN y ARN ( adenina , guanina y moléculas orgánicas relacionadas ), bloques de construcción para la vida tal como la conocemos, pueden formarse extraterrestre en el espacio exterior .

En octubre de 2011, los científicos informaron que el polvo cósmico contiene materia orgánica compleja ("sólidos orgánicos amorfos con una estructura mixta aromático - alifática ") que las estrellas podrían crear de forma natural y rápida .

El 29 de agosto de 2012, los astrónomos de la Universidad de Copenhague informaron sobre la detección de una molécula de azúcar específica, el glicolaldehído , en un sistema estelar distante. La molécula se encontró alrededor del binario protoestelar IRAS 16293-2422 , que se encuentra a 400 años luz de la Tierra. El glicolaldehído es necesario para formar ácido ribonucleico o ARN , que tiene una función similar al ADN . Este hallazgo sugiere que se pueden formar moléculas orgánicas complejas en sistemas estelares antes de la formación de los planetas, y eventualmente llegarán a los planetas jóvenes al principio de su formación.

En septiembre de 2012, los científicos de la NASA informaron que los hidrocarburos aromáticos policíclicos (PAH) , sometidos a las condiciones del medio interestelar (ISM) , se transforman, mediante hidrogenación , oxigenación e hidroxilación , en compuestos orgánicos más complejos , "un paso en el camino hacia los aminoácidos y nucleótidos. , las materias primas de proteínas y ADN , respectivamente ". Además, como resultado de estas transformaciones, los HAP pierden su firma espectroscópica, lo que podría ser una de las razones "de la falta de detección de HAP en los granos de hielo interestelares , en particular en las regiones exteriores de nubes frías y densas o en las capas moleculares superiores de las capas protoplanetarias". discos ".

En 2013, Atacama Large Millimeter Array (Proyecto ALMA) confirmó que los investigadores han descubierto un par importante de moléculas prebióticas en las partículas heladas del espacio interestelar (ISM). Los productos químicos, que se encuentran en una nube gigante de gas a unos 25.000 años luz de la Tierra en ISM, pueden ser un precursor de un componente clave del ADN y el otro puede tener un papel en la formación de un aminoácido importante . Los investigadores encontraron una molécula llamada cianometanimina, que produce adenina , una de las cuatro nucleobases que forman los "peldaños" en la estructura en forma de escalera del ADN. Se cree que la otra molécula, llamada etanamina , desempeña un papel en la formación de alanina , uno de los veinte aminoácidos del código genético. Anteriormente, los científicos pensaban que tales procesos tenían lugar en el gas muy tenue entre las estrellas. Sin embargo, los nuevos descubrimientos sugieren que las secuencias de formación química de estas moléculas no se produjeron en el gas, sino en las superficies de los granos de hielo en el espacio interestelar. Anthony Remijan, científico de la NASA ALMA, declaró que encontrar estas moléculas en una nube de gas interestelar significa que importantes bloques de construcción para el ADN y los aminoácidos pueden "sembrar" planetas recién formados con los precursores químicos de por vida.

En enero de 2014, la NASA informó que los estudios actuales en el planeta Marte por parte de la curiosidad y de la oportunidad Rovers serán ahora en busca de evidencia de vida antigua, incluyendo una biosfera basado en autótrofos , quimiotróficas y / o quimiolitoautotróficas microorganismos , así como el agua antigua, incluyendo Ambientes fluvio-lacustres ( llanuras relacionadas con antiguos ríos o lagos) que pueden haber sido habitables . La búsqueda de evidencia de habitabilidad , tafonomía (relacionada con fósiles ) y carbono orgánico en el planeta Marte es ahora un objetivo principal de la NASA .

En febrero de 2014, la NASA anunció una base de datos muy mejorada para rastrear hidrocarburos aromáticos policíclicos (HAP) en el universo . Según los científicos, más del 20% del carbono del universo puede estar asociado con los HAP, posibles materiales de partida para la formación de vida . Los PAH parecen haberse formado poco después del Big Bang , están muy extendidos por todo el universo y están asociados con nuevas estrellas y exoplanetas .

Ver también

Referencias

enlaces externos